Secant (trigonometric Function)
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are
real function In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers \mathbb, or a subset of \mathbb that contains an interv ...
s which relate an angle of a
right-angled triangle A right triangle (American English) or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right an ...
to ratios of two side lengths. They are widely used in all sciences that are related to
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, such as
navigation Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navigation, ...
,
solid mechanics Solid mechanics, also known as mechanics of solids, is the branch of continuum mechanics that studies the behavior of solid materials, especially their motion and deformation under the action of forces, temperature changes, phase changes, and ot ...
,
celestial mechanics Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
,
geodesy Geodesy ( ) is the Earth science of accurately measuring and understanding Earth's figure (geometric shape and size), orientation in space, and gravity. The field also incorporates studies of how these properties change over time and equivale ...
, and many others. They are among the simplest
periodic function A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to desc ...
s, and as such are also widely used for studying periodic phenomena through
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Josep ...
. The trigonometric functions most widely used in modern mathematics are the
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is oppo ...
, the cosine, and the tangent. Their
reciprocal Reciprocal may refer to: In mathematics * Multiplicative inverse, in mathematics, the number 1/''x'', which multiplied by ''x'' gives the product 1, also known as a ''reciprocal'' * Reciprocal polynomial, a polynomial obtained from another pol ...
s are respectively the cosecant, the secant, and the cotangent, which are less used. Each of these six trigonometric functions has a corresponding
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X\t ...
, and an analog among the
hyperbolic functions In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the u ...
. The oldest definitions of trigonometric functions, related to right-angle triangles, define them only for
acute angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles are ...
s. To extend the sine and cosine functions to functions whose
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
is the whole
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
, geometrical definitions using the standard
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucl ...
(i.e., a circle with
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
1 unit) are often used; then the domain of the other functions is the real line with some isolated points removed. Modern definitions express trigonometric functions as
infinite series In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, math ...
or as solutions of
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s. This allows extending the domain of sine and cosine functions to the whole
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
, and the domain of the other trigonometric functions to the complex plane with some isolated points removed.


Notation

Conventionally, an abbreviation of each trigonometric function's name is used as its symbol in formulas. Today, the most common versions of these abbreviations are "sin" for sine, "cos" for cosine, "tan" or "tg" for tangent, "sec" for secant, "csc" or "cosec" for cosecant, and "cot" or "ctg" for cotangent. Historically, these abbreviations were first used in prose sentences to indicate particular
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
s or their lengths related to an
arc ARC may refer to: Business * Aircraft Radio Corporation, a major avionics manufacturer from the 1920s to the '50s * Airlines Reporting Corporation, an airline-owned company that provides ticket distribution, reporting, and settlement services * ...
of an arbitrary circle, and later to indicate ratios of lengths, but as the function concept developed in the 17th–18th century, they began to be considered as functions of real-number-valued angle measures, and written with
functional notation In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the functi ...
, for example . Parentheses are still often omitted to reduce clutter, but are sometimes necessary; for example the expression \sin x+y would typically be interpreted to mean \sin (x)+y, so parentheses are required to express \sin (x+y). A
positive integer In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
appearing as a superscript after the symbol of the function denotes
exponentiation Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to re ...
, not
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
. For example \sin^2 x and \sin^2 (x) denote \sin(x) \cdot \sin(x), not \sin(\sin x). This differs from the (historically later) general functional notation in which f^2(x) = (f \circ f)(x) = f(f(x)). However, the exponent is commonly used to denote the
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X\t ...
, not the
reciprocal Reciprocal may refer to: In mathematics * Multiplicative inverse, in mathematics, the number 1/''x'', which multiplied by ''x'' gives the product 1, also known as a ''reciprocal'' * Reciprocal polynomial, a polynomial obtained from another pol ...
. For example \sin^x and \sin^(x) denote the
inverse trigonometric function In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Spec ...
alternatively written \arcsin x\colon The equation \theta = \sin^x implies \sin \theta = x, not \theta \cdot \sin x = 1. In this case, the superscript ''could'' be considered as denoting a composed or
iterated function In mathematics, an iterated function is a function (that is, a function from some set to itself) which is obtained by composing another function with itself a certain number of times. The process of repeatedly applying the same function is ...
, but negative superscripts other than are not in common use.


Right-angled triangle definitions

If the acute angle is given, then any right triangles that have an angle of are similar to each other. This means that the ratio of any two side lengths depends only on . Thus these six ratios define six functions of , which are the trigonometric functions. In the following definitions, the
hypotenuse In geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse equa ...
is the length of the side opposite the right angle, ''opposite'' represents the side opposite the given angle , and ''adjacent'' represents the side between the angle and the right angle. In a right-angled triangle, the sum of the two acute angles is a right angle, that is, or . Therefore \sin(\theta) and \cos(90^\circ - \theta) represent the same ratio, and thus are equal. This identity and analogous relationships between the other trigonometric functions are summarized in the following table.


Radians versus degrees

In geometric applications, the argument of a trigonometric function is generally the measure of an
angle In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle. Angles formed by two ...
. For this purpose, any
angular unit In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
is convenient, and angles are most commonly measured in conventional units of degrees in which a right angle is 90° and a complete turn is 360° (particularly in
elementary mathematics Elementary mathematics consists of mathematics topics frequently taught at the primary or secondary school levels. In the Canadian curriculum, there are six basic strands in Elementary Mathematics: Number, Algebra, Data, Spatial Sense, Finan ...
). However, in
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
and
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, the trigonometric functions are generally regarded more abstractly as functions of
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
or
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s, rather than angles. In fact, the functions sin and cos can be defined for all complex numbers in terms of the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
via power series or as solutions to
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s given particular initial values (''see below''), without reference to any geometric notions. The other four trigonometric functions (tan, cot, sec, csc) can be defined as quotients and reciprocals of sin and cos, except where zero occurs in the denominator. It can be proved, for real arguments, that these definitions coincide with elementary geometric definitions ''if'' ''the argument is regarded as an angle given in radians''. Moreover, these definitions result in simple expressions for the
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. F ...
s and indefinite integrals for the trigonometric functions. Thus, in settings beyond elementary geometry, radians are regarded as the mathematically natural unit for describing angle measures. When
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before that c ...
s (rad) are employed, the angle is given as the length of the
arc ARC may refer to: Business * Aircraft Radio Corporation, a major avionics manufacturer from the 1920s to the '50s * Airlines Reporting Corporation, an airline-owned company that provides ticket distribution, reporting, and settlement services * ...
of the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucl ...
subtended by it: the angle that subtends an arc of length 1 on the unit circle is 1 rad (≈ 57.3°), and a complete turn (360°) is an angle of 2 (≈ 6.28) rad. For real number ''x'', the notations sin ''x'', cos ''x'', etc. refer to the value of the trigonometric functions evaluated at an angle of ''x'' rad. If units of degrees are intended, the degree sign must be explicitly shown (e.g., sin ''x°'', cos ''x°'', etc.). Using this standard notation, the argument ''x'' for the trigonometric functions satisfies the relationship ''x'' = (180''x''/)°, so that, for example, sin = sin 180° when we take ''x'' = . In this way, the degree symbol can be regarded as a mathematical constant such that 1° = /180 ≈ 0.0175.


Unit-circle definitions

The six trigonometric functions can be defined as coordinate values of points on the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
that are related to the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucl ...
, which is the
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
of radius one centered at the origin of this coordinate system. While right-angled triangle definitions allow for the definition of the trigonometric functions for angles between and \frac
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before that c ...
s the unit circle definitions allow the domain of trigonometric functions to be extended to all positive and negative real numbers. Let \mathcal L be the ray obtained by rotating by an angle the positive half of the -axis (
counterclockwise Two-dimensional rotation can occur in two possible directions. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands: from the top to the right, then down and then to the left, and back up to the top. The opposite ...
rotation for \theta > 0, and clockwise rotation for \theta < 0). This ray intersects the unit circle at the point \mathrm = (x_\mathrm,y_\mathrm). The ray \mathcal L, extended to a
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Arts ...
if necessary, intersects the line of equation x=1 at point \mathrm = (1,y_\mathrm), and the line of equation y=1 at point \mathrm = (x_\mathrm,1). The
tangent line In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
to the unit circle at the point , is
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
to \mathcal L, and intersects the - and -axes at points \mathrm = (0,y_\mathrm) and \mathrm = (x_\mathrm,0). The
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
of these points give the values of all trigonometric functions for any arbitrary real value of in the following manner. The trigonometric functions and are defined, respectively, as the ''x''- and ''y''-coordinate values of point . That is, :\cos \theta = x_\mathrm \quad and \quad \sin \theta = y_\mathrm. In the range 0 \le \theta \le \pi/2, this definition coincides with the right-angled triangle definition, by taking the right-angled triangle to have the unit radius as
hypotenuse In geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse equa ...
. And since the equation x^2+y^2=1 holds for all points \mathrm = (x,y) on the unit circle, this definition of cosine and sine also satisfies the
Pythagorean identity The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations be ...
. :\cos^2\theta+\sin^2\theta=1. The other trigonometric functions can be found along the unit circle as :\tan \theta = y_\mathrm \quad and \quad\cot \theta = x_\mathrm, :\csc \theta\ = y_\mathrm \quad and \quad\sec \theta = x_\mathrm. By applying the Pythagorean identity and geometric proof methods, these definitions can readily be shown to coincide with the definitions of tangent, cotangent, secant and cosecant in terms of sine and cosine, that is : \tan \theta =\frac,\quad \cot\theta=\frac,\quad \sec\theta=\frac,\quad \csc\theta=\frac. Since a rotation of an angle of \pm2\pi does not change the position or size of a shape, the points , , , , and are the same for two angles whose difference is an integer multiple of 2\pi. Thus trigonometric functions are
periodic function A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to desc ...
s with period 2\pi. That is, the equalities : \sin\theta = \sin\left(\theta + 2 k \pi \right)\quad and \quad \cos\theta = \cos\left(\theta + 2 k \pi \right) hold for any angle and any
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
. The same is true for the four other trigonometric functions. By observing the sign and the monotonicity of the functions sine, cosine, cosecant, and secant in the four quadrants, one can show that 2\pi is the smallest value for which they are periodic (i.e., 2\pi is the fundamental period of these functions). However, after a rotation by an angle \pi, the points and already return to their original position, so that the tangent function and the cotangent function have a fundamental period of \pi. That is, the equalities : \tan\theta = \tan(\theta + k\pi) \quad and \quad \cot\theta = \cot(\theta + k\pi) hold for any angle and any integer .


Algebraic values

The
algebraic expression In mathematics, an algebraic expression is an expression built up from integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number). For ex ...
s for the most important angles are as follows: :\sin 0 = \sin 0^\circ \quad= \frac2 = 0 ( zero angle) :\sin \frac\pi6 = \sin 30^\circ = \frac2 = \frac :\sin \frac\pi4 = \sin 45^\circ = \frac = \frac :\sin \frac\pi3 = \sin 60^\circ = \frac :\sin \frac\pi2 = \sin 90^\circ = \frac2 = 1 (
right angle In geometry and trigonometry, a right angle is an angle of exactly 90 Degree (angle), degrees or radians corresponding to a quarter turn (geometry), turn. If a Line (mathematics)#Ray, ray is placed so that its endpoint is on a line and the ad ...
) Writing the numerators as
square roots In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . E ...
of consecutive non-negative integers, with a denominator of 2, provides an easy way to remember the values. Such simple expressions generally do not exist for other angles which are rational multiples of a right angle. *For an angle which, measured in degrees, is a multiple of three, the
exact trigonometric values In mathematics, the values of the trigonometric functions can be expressed approximately, as in \cos (\pi/4) \approx 0.707, or exactly, as in \cos (\pi/ 4)= \sqrt 2 /2. While trigonometric tables contain many approximate values, the exact values f ...
of the sine and the cosine may be expressed in terms of square roots. These values of the sine and the cosine may thus be constructed by
ruler and compass In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
. *For an angle of an integer number of degrees, the sine and the cosine may be expressed in terms of square roots and the
cube root In mathematics, a cube root of a number is a number such that . All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. Fo ...
of a non-real
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
.
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
allows a proof that, if the angle is not a multiple of 3°, non-real cube roots are unavoidable. *For an angle which, expressed in degrees, is a
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
, the sine and the cosine are
algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
s, which may be expressed in terms of th roots. This results from the fact that the
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...
s of the
cyclotomic polynomial In mathematics, the ''n''th cyclotomic polynomial, for any positive integer ''n'', is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all ''n''th primiti ...
s are
cyclic Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in soc ...
. *For an angle which, expressed in degrees, is not a rational number, then either the angle or both the sine and the cosine are
transcendental number In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are and . Though only a few classes ...
s. This is a corollary of
Baker's theorem In transcendental number theory, a mathematical discipline, Baker's theorem gives a lower bound for the absolute value of linear combinations of logarithms of algebraic numbers. The result, proved by , subsumed many earlier results in transcendenta ...
, proved in 1966.


Simple algebraic values

The following table lists the sines, cosines, and tangents of multiples of 15 degrees from 0 to 90 degrees.


In calculus

Graphs of sine, cosine and tangent The modern trend in mathematics is to build
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
from
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
rather than the converse. Therefore, except at a very elementary level, trigonometric functions are defined using the methods of calculus. Trigonometric functions are
differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
and analytic at every point where they are defined; that is, everywhere for the sine and the cosine, and, for the tangent, everywhere except at for every integer . The trigonometric function are
periodic function A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to desc ...
s, and their primitive period is for the sine and the cosine, and for the tangent, which is
increasing In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
in each
open interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
. At each end point of these intervals, the tangent function has a vertical
asymptote In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, ...
. In calculus, there are two equivalent definitions of trigonometric functions, either using
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a const ...
or
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s. These definitions are equivalent, as starting from one of them, it is easy to retrieve the other as a property. However the definition through differential equations is somehow more natural, since, for example, the choice of the coefficients of the power series may appear as quite arbitrary, and the Pythagorean identity is much easier to deduce from the differential equations.


Definition by differential equations

Sine and cosine can be defined as the unique solution to the
initial value problem In multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or oth ...
: :\frac\sin x= \cos x,\ \frac\cos x= -\sin x,\ \sin(0)=0,\ \cos(0)=1. Differentiating again, \frac\sin x = \frac\cos x = -\sin x and \frac\cos x = -\frac\sin x = -\cos x, so both sine and cosine are solutions of the
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast w ...
:y''+y=0. Applying the
quotient rule In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let h(x)=f(x)/g(x), where both and are differentiable and g(x)\neq 0. The quotient rule states that the derivat ...
to the tangent \tan x = \sin x / \cos x, we derive :\frac\tan x = \frac = 1+\tan^2 x = \sec^2 x.


Power series expansion

Applying the differential equations to
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a const ...
with indeterminate coefficients, one may deduce
recurrence relation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
s for the coefficients of the
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor serie ...
of the sine and cosine functions. These recurrence relations are easy to solve, and give the series expansions : \begin \sin x & = x - \frac + \frac - \frac + \cdots \\ mu& = \sum_^\infty \fracx^ \\ pt\cos x & = 1 - \frac + \frac - \frac + \cdots \\ mu& = \sum_^\infty \fracx^. \end The
radius of convergence In mathematics, the radius of convergence of a power series is the radius of the largest disk at the center of the series in which the series converges. It is either a non-negative real number or \infty. When it is positive, the power series co ...
of these series is infinite. Therefore, the sine and the cosine can be extended to
entire function In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any fin ...
s (also called "sine" and "cosine"), which are (by definition)
complex-valued function Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
s that are defined and
holomorphic In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
on the whole
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
. Being defined as fractions of entire functions, the other trigonometric functions may be extended to
meromorphic function In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are pole (complex analysis), pole ...
s, that is functions that are holomorphic in the whole complex plane, except some isolated points called
poles Poles,, ; singular masculine: ''Polak'', singular feminine: ''Polka'' or Polish people, are a West Slavic nation and ethnic group, who share a common history, culture, the Polish language and are identified with the country of Poland in Ce ...
. Here, the poles are the numbers of the form (2k+1)\frac \pi 2 for the tangent and the secant, or k\pi for the cotangent and the cosecant, where is an arbitrary integer. Recurrences relations may also be computed for the coefficients of the
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor serie ...
of the other trigonometric functions. These series have a finite
radius of convergence In mathematics, the radius of convergence of a power series is the radius of the largest disk at the center of the series in which the series converges. It is either a non-negative real number or \infty. When it is positive, the power series co ...
. Their coefficients have a
combinatorial Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many app ...
interpretation: they enumerate alternating permutations of finite sets. More precisely, defining : , the th up/down number, : , the th Bernoulli number, and : , is the th Euler number, one has the following series expansions: : \begin \tan x & = \sum_^\infty \fracx^ \\[8mu] & = \sum_^\infty \fracx^ \\[5mu] & = x + \fracx^3 + \fracx^5 + \fracx^7 + \cdots, \qquad \text , x, < \frac. \end : \begin \csc x &= \sum_^\infty \fracx^ \\[5mu] &= x^ + \fracx + \fracx^3 + \fracx^5 + \cdots, \qquad \text 0 < , x, < \pi. \end : \begin \sec x &= \sum_^\infty \fracx^ = \sum_^\infty \fracx^ \\[5mu] &= 1 + \fracx^2 + \fracx^4 + \fracx^6 + \cdots, \qquad \text , x, < \frac. \end : \begin \cot x &= \sum_^\infty \fracx^ \\[5mu] &= x^ - \fracx - \fracx^3 - \fracx^5 - \cdots, \qquad \text 0 < , x, < \pi. \end


Continued fraction expansion

The following expansions are valid in the whole complex plane: : \sin x = \cfrac : \cos x = \cfrac :\tan x = \cfrac=\cfrac The last one was used in the historically first proof that π is irrational.


Partial fraction expansion

There is a series representation as partial fraction expansion where just translated Multiplicative inverse, reciprocal functions are summed up, such that the Pole (complex analysis), poles of the cotangent function and the reciprocal functions match: : \pi \cot \pi x = \lim_\sum_^N \frac. This identity can be proved with the Gustav Herglotz, Herglotz trick. Combining the th with the th term lead to absolute convergence, absolutely convergent series: : \pi \cot \pi x = \frac + 2x\sum_^\infty \frac. Similarly, one can find a partial fraction expansion for the secant, cosecant and tangent functions: : \pi\csc\pi x = \sum_^\infty \frac=\frac + 2x\sum_^\infty \frac, :\pi^2\csc^2\pi x=\sum_^\infty \frac, : \pi\sec\pi x = \sum_^\infty (-1)^n \frac, : \pi \tan \pi x = 2x\sum_^\infty \frac.


Infinite product expansion

The following infinite product for the sine is of great importance in complex analysis: :\sin z = z \prod_^\infty \left(1-\frac\right), \quad z\in\mathbb C. For the proof of this expansion, see Sine#Partial fraction and product expansions of complex sine, Sine. From this, it can be deduced that :\cos z = \prod_^\infty \left(1-\frac\right), \quad z\in\mathbb C.


Relationship to exponential function (Euler's formula)

Euler's formula relates sine and cosine to the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
: : e^ = \cos x + i\sin x. This formula is commonly considered for real values of , but it remains true for all complex values. ''Proof'': Let f_1(x)=\cos x + i\sin x, and f_2(x)=e^. One has df_j(x)/dx= if_j(x) for . The
quotient rule In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let h(x)=f(x)/g(x), where both and are differentiable and g(x)\neq 0. The quotient rule states that the derivat ...
implies thus that d/dx\, (f_1(x)/f_2(x))=0. Therefore, f_1(x)/f_2(x) is a constant function, which equals , as f_1(0)=f_2(0)=1. This proves the formula. One has :\begin e^ &= \cos x + i\sin x\\[5pt] e^ &= \cos x - i\sin x. \end Solving this linear system in sine and cosine, one can express them in terms of the exponential function: : \begin\sin x &= \frac\\[5pt] \cos x &= \frac. \end When is real, this may be rewritten as : \cos x = \operatorname\left(e^\right), \qquad \sin x = \operatorname\left(e^\right). Most List of trigonometric identities, trigonometric identities can be proved by expressing trigonometric functions in terms of the complex exponential function by using above formulas, and then using the identity e^=e^ae^b for simplifying the result.


Definitions using functional equations

One can also define the trigonometric functions using various functional equations. For example, the sine and the cosine form the unique pair of continuous functions that satisfy the difference formula : \cos(x- y) = \cos x\cos y + \sin x\sin y\, and the added condition : 0 < x\cos x < \sin x < x\quad\text\quad 0 < x < 1.


In the complex plane

The sine and cosine of a
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
z=x+iy can be expressed in terms of real sines, cosines, and hyperbolic functions as follows: : \begin\sin z &= \sin x \cosh y + i \cos x \sinh y\\[5pt] \cos z &= \cos x \cosh y - i \sin x \sinh y\end By taking advantage of domain coloring, it is possible to graph the trigonometric functions as complex-valued functions. Various features unique to the complex functions can be seen from the graph; for example, the sine and cosine functions can be seen to be unbounded as the imaginary part of z becomes larger (since the color white represents infinity), and the fact that the functions contain simple Zeros and poles, zeros or poles is apparent from the fact that the hue cycles around each zero or pole exactly once. Comparing these graphs with those of the corresponding Hyperbolic functions highlights the relationships between the two.


Basic identities

Many identity (mathematics), identities interrelate the trigonometric functions. This section contains the most basic ones; for more identities, see List of trigonometric identities. These identities may be proved geometrically from the unit-circle definitions or the right-angled-triangle definitions (although, for the latter definitions, care must be taken for angles that are not in the interval , see Proofs of trigonometric identities). For non-geometrical proofs using only tools of
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
, one may use directly the differential equations, in a way that is similar to that of the #Relationship to exponential function (Euler's formula), above proof of Euler's identity. One can also use Euler's identity for expressing all trigonometric functions in terms of complex exponentials and using properties of the exponential function.


Parity

The cosine and the secant are even functions; the other trigonometric functions are odd functions. That is: :\begin \sin(-x) &=-\sin x\\ \cos(-x) &=\cos x\\ \tan(-x) &=-\tan x\\ \cot(-x) &=-\cot x\\ \csc(-x) &=-\csc x\\ \sec(-x) &=\sec x. \end


Periods

All trigonometric functions are
periodic function A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to desc ...
s of period . This is the smallest period, except for the tangent and the cotangent, which have as smallest period. This means that, for every integer , one has :\begin \sin (x+2k\pi) &=\sin x\\ \cos (x+2k\pi) &=\cos x\\ \tan (x+k\pi) &=\tan x\\ \cot (x+k\pi) &=\cot x\\ \csc (x+2k\pi) &=\csc x\\ \sec (x+2k\pi) &=\sec x. \end


Pythagorean identity

The Pythagorean identity, is the expression of the Pythagorean theorem in terms of trigonometric functions. It is :\sin^2 x + \cos^2 x = 1. Dividing through by either \cos^2 x or \sin^2 x gives :\tan^2 x + 1 = \sec^2 x and :1 + \cot^2 x = \csc^2 x.


Sum and difference formulas

The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to Ptolemy. One can also produce them algebraically using Euler's formula. ; Sum :\begin \sin\left(x+y\right)&=\sin x \cos y + \cos x \sin y,\\[5mu] \cos\left(x+y\right)&=\cos x \cos y - \sin x \sin y,\\[5mu] \tan(x + y) &= \frac. \end ; Difference :\begin \sin\left(x-y\right)&=\sin x \cos y - \cos x \sin y,\\[5mu] \cos\left(x-y\right)&=\cos x \cos y + \sin x \sin y,\\[5mu] \tan(x - y) &= \frac. \end When the two angles are equal, the sum formulas reduce to simpler equations known as the double-angle formulae. :\begin \sin 2x &= 2 \sin x \cos x = \frac, \\[5mu] \cos 2x &= \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x = \frac,\\[5mu] \tan 2x &= \frac. \end These identities can be used to derive the product-to-sum identities. By setting t=\tan \tfrac12 \theta, all trigonometric functions of \theta can be expressed as rational fractions of t: :\begin \sin \theta &= \frac, \\[5mu] \cos \theta &= \frac,\\[5mu] \tan \theta &= \frac. \end Together with :d\theta = \frac \, dt, this is the tangent half-angle substitution, which reduces the computation of integrals and antiderivatives of trigonometric functions to that of rational fractions.


Derivatives and antiderivatives

The
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. F ...
s of trigonometric functions result from those of sine and cosine by applying
quotient rule In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let h(x)=f(x)/g(x), where both and are differentiable and g(x)\neq 0. The quotient rule states that the derivat ...
. The values given for the antiderivatives in the following table can be verified by differentiating them. The number  is a constant of integration. Alternatively, the derivatives of the 'co-functions' can be obtained using trigonometric identities and the chain rule: : \begin \frac &= \frac\sin(\pi/2-x)=-\cos(\pi/2-x)=-\sin x \, , \\ \frac &= \frac\sec(\pi/2 - x) = -\sec(\pi/2 - x)\tan(\pi/2 - x) = -\csc x \cot x \, , \\ \frac &= \frac\tan(\pi/2 - x) = -\sec^2(\pi/2 - x) = -\csc^2 x \, . \end


Inverse functions

The trigonometric functions are periodic, and hence not injective function, injective, so strictly speaking, they do not have an
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X\t ...
. However, on each interval on which a trigonometric function is monotonic, one can define an inverse function, and this defines inverse trigonometric functions as multivalued functions. To define a true inverse function, one must restrict the domain to an interval where the function is monotonic, and is thus bijection, bijective from this interval to its image by the function. The common choice for this interval, called the set of principal values, is given in the following table. As usual, the inverse trigonometric functions are denoted with the prefix "arc" before the name or its abbreviation of the function. The notations , , etc. are often used for and , etc. When this notation is used, inverse functions could be confused with multiplicative inverses. The notation with the "arc" prefix avoids such a confusion, though "arcsec" for arcsecant can be confused with "arcsecond". Just like the sine and cosine, the inverse trigonometric functions can also be expressed in terms of infinite series. They can also be expressed in terms of complex logarithms.


Applications


Angles and sides of a triangle

In this section , , denote the three (interior) angles of a triangle, and , , denote the lengths of the respective opposite edges. They are related by various formulas, which are named by the trigonometric functions they involve.


Law of sines

The law of sines states that for an arbitrary triangle with sides , , and and angles opposite those sides , and : \frac = \frac = \frac = \frac, where is the area of the triangle, or, equivalently, \frac = \frac = \frac = 2R, where is the triangle's circumscribed circle, circumradius. It can be proved by dividing the triangle into two right ones and using the above definition of sine. The law of sines is useful for computing the lengths of the unknown sides in a triangle if two angles and one side are known. This is a common situation occurring in ''triangulation'', a technique to determine unknown distances by measuring two angles and an accessible enclosed distance.


Law of cosines

The law of cosines (also known as the cosine formula or cosine rule) is an extension of the Pythagorean theorem: c^2=a^2+b^2-2ab\cos C, or equivalently, \cos C=\frac. In this formula the angle at is opposite to the side . This theorem can be proved by dividing the triangle into two right ones and using the Pythagorean theorem. The law of cosines can be used to determine a side of a triangle if two sides and the angle between them are known. It can also be used to find the cosines of an angle (and consequently the angles themselves) if the lengths of all the sides are known.


Law of tangents

The law of tangents says that: :\frac = \frac.


Law of cotangents

If ''s'' is the triangle's semiperimeter, (''a'' + ''b'' + ''c'')/2, and ''r'' is the radius of the triangle's incircle, then ''rs'' is the triangle's area. Therefore Heron's formula implies that: : r = \sqrt. The law of cotangents says that: :\cot = \frac It follows that :\frac=\frac=\frac=\frac.


Periodic functions

The trigonometric functions are also important in physics. The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion. Trigonometric functions also prove to be useful in the study of general
periodic function A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to desc ...
s. The characteristic wave patterns of periodic functions are useful for modeling recurring phenomena such as sound or light waves. Under rather general conditions, a periodic function can be expressed as a sum of sine waves or cosine waves in a Fourier series. Denoting the sine or cosine basis functions by , the expansion of the periodic function takes the form: f(t) = \sum _^\infty c_k \varphi_k(t). For example, the square wave can be written as the Fourier series f_\text(t) = \frac \sum_^\infty . In the animation of a square wave at top right it can be seen that just a few terms already produce a fairly good approximation. The superposition of several terms in the expansion of a sawtooth wave are shown underneath.


History

While the early study of trigonometry can be traced to antiquity, the trigonometric functions as they are in use today were developed in the medieval period. The Chord (geometry), chord function was discovered by Hipparchus of İznik, Nicaea (180–125 BCE) and Ptolemy of Egypt (Roman province), Roman Egypt (90–165 CE). The functions of sine and versine (1 – cosine) can be traced back to the Jyā, koti-jyā and utkrama-jyā, ''jyā'' and ''koti-jyā'' functions used in Gupta period Indian astronomy (''Aryabhatiya'', ''Surya Siddhanta''), via translation from Sanskrit to Arabic and then from Arabic to Latin. (See Aryabhata's sine table.) All six trigonometric functions in current use were known in Islamic mathematics by the 9th century, as was the law of sines, used in solving triangles. With the exception of the sine (which was adopted from Indian mathematics), the other five modern trigonometric functions were discovered by Persian and Arab mathematicians, including the cosine, tangent, cotangent, secant and cosecant. Al-Khwārizmī (c. 780–850) produced tables of sines, cosines and tangents. Circa 830, Habash al-Hasib al-Marwazi discovered the cotangent, and produced tables of tangents and cotangents.Jacques Sesiano, "Islamic mathematics", p. 157, in Muhammad ibn Jābir al-Harrānī al-Battānī (853–929) discovered the reciprocal functions of secant and cosecant, and produced the first table of cosecants for each degree from 1° to 90°. The trigonometric functions were later studied by mathematicians including Omar Khayyám, Bhāskara II, Nasir al-Din al-Tusi, Jamshīd al-Kāshī (14th century), Ulugh Beg (14th century), Regiomontanus (1464), Georg Joachim Rheticus, Rheticus, and Rheticus' student Valentinus Otho. Madhava of Sangamagrama (c. 1400) made early strides in the mathematical analysis, analysis of trigonometric functions in terms of series (mathematics), infinite series. (See Madhava series and Madhava's sine table.) The tangent function was brought to Europe by Giovanni Bianchini in 1467 in trigonometry tables he created to support the calculation of stellar coordinates. The terms ''tangent'' and ''secant'' were first introduced by the Danish mathematician Thomas Fincke in his book ''Geometria rotundi'' (1583). The 17th century French mathematician Albert Girard made the first published use of the abbreviations ''sin'', ''cos'', and ''tan'' in his book ''Trigonométrie''. In a paper published in 1682, Gottfried Leibniz proved that is not an algebraic function of . Though introduced as ratios of sides of a right triangle, and thus appearing to be rational functions, Leibnitz result established that they are actually transcendental functions of their argument. The task of assimilating circular functions into algebraic expressions was accomplished by Euler in his ''Introduction to the Analysis of the Infinite'' (1748). His method was to show that the sine and cosine functions are alternating series formed from the even and odd terms respectively of the exponential function, exponential series. He presented "Euler's formula", as well as near-modern abbreviations (''sin.'', ''cos.'', ''tang.'', ''cot.'', ''sec.'', and ''cosec.''). A few functions were common historically, but are now seldom used, such as the chord (geometry), chord, the versine (which appeared in the earliest tables), the coversine, the haversine, the exsecant and the excosecant. The list of trigonometric identities shows more relations between these functions. * * * * * *


Etymology

The word derives from Latin ''wikt:sinus, sinus'', meaning "bend; bay", and more specifically "the hanging fold of the upper part of a toga", "the bosom of a garment", which was chosen as the translation of what was interpreted as the Arabic word ''jaib'', meaning "pocket" or "fold" in the twelfth-century translations of works by Al-Battani and Muḥammad ibn Mūsā al-Khwārizmī, al-Khwārizmī into Medieval Latin. The choice was based on a misreading of the Arabic written form ''j-y-b'' (), which itself originated as a transliteration from Sanskrit ', which along with its synonym ' (the standard Sanskrit term for the sine) translates to "bowstring", being in turn adopted from Ancient Greek language, Ancient Greek "string". The word ''tangent'' comes from Latin ''tangens'' meaning "touching", since the line ''touches'' the circle of unit radius, whereas ''secant'' stems from Latin ''secans''—"cutting"—since the line ''cuts'' the circle.Oxford English Dictionary The prefix "co (function prefix), co-" (in "cosine", "cotangent", "cosecant") is found in Edmund Gunter's ''Canon triangulorum'' (1620), which defines the ''cosinus'' as an abbreviation for the ''sinus complementi'' (sine of the complementary angle) and proceeds to define the ''cotangens'' similarly.


See also

* All Students Take Calculus – a mnemonic for recalling the signs of trigonometric functions in a particular quadrant of a Cartesian plane * Bhaskara I's sine approximation formula * Differentiation of trigonometric functions * Generalized trigonometry * Generating trigonometric tables * Hyperbolic function * List of integrals of trigonometric functions * List of periodic functions * List of trigonometric identities * Polar sine – a generalization to vertex angles * Proofs of trigonometric identities * Versine – for several less used trigonometric functions


Notes


References

* * Lars Ahlfors, ''Complex Analysis: an introduction to the theory of analytic functions of one complex variable'', second edition, McGraw-Hill Book Company, New York, 1966. * Carl Benjamin Boyer, Boyer, Carl B., ''A History of Mathematics'', John Wiley & Sons, Inc., 2nd edition. (1991). . * * Gal, Shmuel and Bachelis, Boris. An accurate elementary mathematical library for the IEEE floating point standard, ACM Transactions on Mathematical Software (1991). * Joseph, George G., ''The Crest of the Peacock: Non-European Roots of Mathematics'', 2nd ed. Penguin Books, London. (2000). . * Kantabutra, Vitit, "On hardware for computing exponential and trigonometric functions," ''IEEE Trans. Computers'' 45 (3), 328–339 (1996). * Maor, Eli,
Trigonometric Delights
', Princeton Univ. Press. (1998). Reprint edition (2002): . * Needham, Tristan
"Preface"
to
Visual Complex Analysis
'. Oxford University Press, (1999). . * * O'Connor, J. J., and E. F. Robertson

''MacTutor History of Mathematics archive''. (1996). * O'Connor, J. J., and E. F. Robertson
"Madhava of Sangamagramma"
''MacTutor History of Mathematics archive''. (2000). * Pearce, Ian G.
"Madhava of Sangamagramma"
, ''MacTutor History of Mathematics archive''. (2002). * * Weisstein, Eric W.
"Tangent"
from ''MathWorld'', accessed 21 January 2006.


External links

*
Visionlearning Module on Wave Mathematics

GonioLab
Visualization of the unit circle, trigonometric and hyperbolic functions

Article about the q-analog of sin at MathWorld
q-Cosine
Article about the q-analog of cos at MathWorld {{DEFAULTSORT:Trigonometric Functions Trigonometric functions, Angle Trigonometry Elementary special functions Analytic functions Ratios Dimensionless numbers